
A Temporal Database Mediator for Protocol-Based Decision Support

John H. Nguyen, Yuval Shahar, Samson W. Tu, Amar K. Das, and Mark A. Musen
Section on Medical Informatics, Stanford University School of Medicine,

Stanford, CA 94305-5479

To meet the data-processing requirements for
protocol-based decision support, a clinical data-
management system must be capable of creating
high-level summaries of time-oriented patient data,
and of retrieving those summaries in a temporally
meaningful fashion. We previously described a
temporal-abstraction module (RtSUMz) and a
temporal-querying module (Chronus) that can be
used together to perform these tasks. These modules
had to be coordinated by individual applications,
however, to resolve the temporal queries ofprotocol
planners. In this paper, we present a new module
that integrates the previous two modules and that
provides for their coordination automatically. The
new module can be used as a standalone system for
retrieving both primitive and abstracted time-
oriented data, or can be embedded in a larger
computational framework for protocol-based
reasoning.

DATA-PROCESSING REQUIREMENTS FOR
PROTOCOL-BASED DECISION SUPPORT

The automation of protocol-based decision
support involves the generation of recommendations
for medical care by a computer program using an
electronic patient record and a knowledge base of
protocols. Such recommendations are often
predicated on the detection of clinically relevant
temporal abstractions of time-oriented data and
temporal patterns in the patient record. For
example, a health-care provider should modify the
standard dose of AZT for a patient if, during
treatment according to a California Cooperative
Treatment Group protocol (CCTG-522), the patient
experiences a second episode of moderate anemia
that has persisted for more than 2 weeks.
Verification of this condition requires the ability to
abstract disjoint episodes of anemia from
electronically stored, time-stamped hemoglobin
values, and then to select an episode that matches the
specified temporal conditions.

The temporal-abstraction and temporal-querying
tasks are relevant to any domain in which data are
collected and analyzed over time. Protocol-based
decision support, in particular, often requires
primitive patient data to be summarized into abstract,

interval-based concepts that can be retrieved in a
consistent and meaningful fashion. Although these
tasks are essential and complementary in the
automation of protocol-based care, no standard
database-query languages currently perform both. To
address this limitation, most developers of protocol-
based decision support programs have either (1)
extended the data-abstraction capabilities of existing
data-management systems and stored the resulting
abstractions into the database (e.g., Arden Syntax'),
or (2) provided data-management techniques within
the knowledge-based system (e.g., ONCOCIN2). We
have argued previously that neither approach alone
permits the reuse of these capabilities across multiple
applications and databases, and that this reuse can be
facilitated by two well-encapsulated components.3

In this paper, we present a strategy for coupling
the temporal-abstraction and temporal-querying tasks
in a manner that can address the data-processing
requirements of protocol-based decision support. We
briefly introduce two modular systems, named
RESUME4 and Chronus,5 that can support these
tasks in a domain-independent manner but that must
be coordinated by client applications. To relieve
client applications of this requirement, we describe a
mediator module, Tzolldn,t that coordinates
automatically the temporal-abstraction and temporal-
querying mechanisms of RESUM]t and Chronus.

THE RESUME AND CHRONUS MODULES

To avoid the previous incompatibility problems
between protocol planners and clinical databases, we
have created modular temporal-abstraction and
temporal-querying components, the RESUMIE and
Chronus systems, respectively. We developed
RESUME using CLIPS, a C-based production-rule
shell. We developed Chronus using a C-based
interface to an Open Database Connectivity (ODBC)-
compliant relational database. Implementation of
these systems as independent components permits the
separation of the domain knowledge of a temporal-
abstraction module from the data-access methods of
underlying relational database systems. This modular

t Tzolkin is the Mayan term for the Sun Stone, which
served as an accurate representation of calendar time.

1091-8280/97/$5.00 0 1997 AMIA, Inc. 298

approach maximizes the reusability of our two
components with different client applications and
databases.

RltSUMl, and Chronus provide complementary
types of temporal deductions over patient data.
RP,SUM1P, a module based on the knowledge-based
temporal-abstraction (KBTA) method,6 uses both
general clinical and protocol-specific knowledge to
extract from primitive data (in working memory)
high-level summaries of a patient's condition over
time (such as the abstraction of time-stamped
hemoglobin values into intervals of anemia). Chronus
provides TImeLIneSQL (TLSQL), a general SQL-
based data-access language, to make temporal queries
on data stored in relational databases. For example,
the TLSQL query that retrieves the first hemoglobin
datum acquired before the year 1997 that belongs to
patient 123 could be formulated as follows:

GRAIN
SELECT
FROM
WHERE

WHEN

YEAR
FIRST parameter
lab_results
parameter = 'Hemoglobin-value'
AND patient_id= '123'
start_time BEFORE '1997'

RItSUMlt, unlike Chronus, does not support queries
over multiple patients or queries consisting of
complex temporal conditions; Chronus, unlike
RItSUMJl, does not support the identification of
intervals that are not stored explicitly in the database.
With the complementary actions of these systems, we
can provide the temporal data-management services
required to automate protocol-based decision support.
As we indicated previously, however, the functions of
these two modules must be coordinated by client
applications.3

THE TZOLKIN TEMPORAL DATABASE
MEDIATOR

Because the coordination of R9SUMIt and
Chronus can be difficult for complex knowledge
bases, we have developed a single system, called
Tzolkin, that combines them. Tzolkin encapsulates
the underlying relational patient database, providing
access to the data via a query language that can
compute abstractions automatically as needed, and
can retrieve them in a temporally meaningful fashion.
All interactions between the database and knowledge
base are completely transparent to the user and the
calling process. Such a system is termed a mediator,7
because it serves as a middle layer between the user-

SQLA query Results

Figure 1: Schematic overview of the Tzolkin
architecture, including the interrelationships of the
modules. Dashed lines represent queries; solid lines
represent the information returned.

oriented processing of applications and the data-
manipulation methods of database systems.

To provide this automatic coordination, Tzolkin
must (1) identify the requested abstractions in a query
statement, (2) determine what domain-specific
knowledge and primitive data are required to
compute those abstractions, (3) determine where to
retrieve these primitives, and (4) invoke the temporal-
abstraction and temporal-querying modules with the
appropriate information. We have developed a
framework based on the Common Object Resource
Broker Architecture (CORBA) that satisfies these
requirements (Figure 1). Such a framework allows
Tzolkin to be used as a standalone system for direct
interaction with the care provider or as an embedded
component within a larger decision-support
framework. The system assumes that an external
database exists as the central data repository. Tzolkin
comprises the following modules:
1. RLASUM] serves as the temporal-abstraction

module.
2. Chronus serves as the temporal-querying

module and as Tzolkin's interface to the
underlying relational database. Because Chronus
communicates with the database via standard
SQL and the ODBC interface, any ODBC-
compliant database containing time-stamped
intervals of data can be integrated easily into the
system.

3. The query preprocessor is the module that
detects and informs the system of abstractions
that need to be computed. The preprocessor also
processes requests for Tzolkin's auxiliary
services, such as data caching and batch

299

processing (e.g., computing all possible
abstractions given a set of patient data).

4. The system-control structure is the top-level
module that coordinates the interaction of all
other Tzolkin modules. It is responsible for
calling each module in the proper order, for
ensuring that each module has the necessary
information to complete its respective task, and
ultimately, for returning the results of a query.
By varying the set of modules that is used and
the order in which the modules are invoked, the
system-control structure can evaluate three
different query classes. These classes will be
discussed in the following section.

In addition to these four modules, Tzolkin requires an
external knowledge base to provide domain- and
application-specific knowledge to the system (e.g.,
knowledge regarding the primitives that are needed to
compute an abstraction.) This knowledge defines the
data requirements of each module and ensures that all
abstractions from RIASUMIA are computed in a
manner that is semantically consistent with the
clinical protocol.

The Query-Evaluation Strategy
The interface to Tzolkin is a query language

named SQL for Abstractions (SQLA). SQLA is
similar to the Chronus TLSQL language, but
provides an important semantic extension. Whereas
TLSQL cannot retrieve data unless they are stored
explicitly in the database, SQLA can retrieve data
that are either stored in the database as primitives or
defined in the knowledge base as abstractions of these
primitives. The semantics of the SQLA language are,
therefore, defined by both the KBTA method and the
relational model. Thus, SQLA allows the user to
query the database for high-level summaries of the
archived data.

Only one syntactic addition to the TLSQL
language is necessary in order to provide the semantic
extension described. Because primitive clinical data
can have multiple context-dependent interpretations
(e.g., the classification of a hemoglobin value as
LOW in one context and NORMAL in another), the
SQLA query must specify the desired interpretation
context when requesting abstractions. Thus, we have
defined a new CONTEXT clause.

Using SQLA, Tzolkin can process three general
classes of queries: those that request (1) abstractions
for a single patient, (2) abstractions for multiple
patients, and (3) only primitive data (Figure 2). The
strategies required to process each of these classes
differ only in the set of Tzolkin modules that is used
and the order in which the modules are invoked. We
will therefore present the detailed evaluation strategy

Results

Figure 2: The general query-evaluation strategy.
Using this algorithm, Tzolkin can resolve queries that
request either primitive or abstracted data for one or
more patients.

for the first query class, and then discuss briefly the
differences between the other two and the first.

Returning to our introductory example, a
protocol planner might ask whether patient 123 has
experienced a second episode of moderate anemia
that has persisted for more than 2 weeks during
therapy with the CCTG-522 protocoL The SQLA
query requests abstractions for a single patient and
could be formulated as follows:

GRAIN
CONTEXT
SELECT
FROM
WHERE

WHEN

WEEK
'CCTG-522-Therapy'
SECOND problem-name
patient-problems-view
problem-name = 'moderate-anemia'
AND patient-id = '123'
DURATION > '2'

Tzolkin processes this query as follows:
1. On receiving this query, the system-control

structure calls the query preprocessor, whose task
it is to evaluate the need for performing temporal
abstraction.

2. After generating a list of the nonkeyword tokens
in the query (e.g., 'moderate-anemia'), the
preprocessor must determine whether any of
these tokens is defined in the knowledge base as
an abstraction of primitive data. The
preprocessor finds that 'moderate-anemia' refers
to information that can be abstracted from
primitives in database, and the CONTEXT

300

clause indicates that these abstractions should be
computed within the context of 'CCTG-522-
Therapy'. This information is returned to the
system-control structure.

3. The system-control structure now must determine
what knowledge and data RI%SUMJt needs to
compute the abstractions identified in step 2. It
searches the knowledge base and finds that
'moderate-anemia' is abstracted from
'hemoglobin-value', which can be found in the
database 'lab-results' table. It also finds that the
event 'CCTG522-START' must be loaded to
frame the generated abstractions within the
context of therapy with CCTG-522.

4. Using the information from step 3, the system-
control structure proceeds to retrieve the
'hemoglobin-value' data directly from the
database (using SQL) for patient '123'. It also
retrieves the 'CCTG522-START' event from the
database and the mapping required for these data
to be loaded properly into R9SUMI0's working
memory.

5. The system-control structure loads these
information into RIPSUMI1 using the database-to-
RItSUMIt mapping rules stored in the knowledge
base, thereby activating the RIgSUM9
abstraction mechanisms.

6. RIASUMNI then computes the abstractions. The
generated abstractions are stored, with their
interval-based time stamps, into the 'patient-
problems-view' table of the clinical database.
These abstractions are not stored beyond the
current session unless so requested by the user.

7. The original query is passed to Chronus, which
processes the temporal conditions imposed by
the query and returns the appropriate tuples.

Three Tzolkin modules eliminate the need for
coordination of Chronus and R1ASUM1, by individual
applications. The query preprocessor detects
abstractions that need to be computed. The
knowledge base informs the system of which data are
required and where they are stored. The system-
control structure directs the query-evaluation process,
loading the appropriate data and invoking the
appropriate modules.

With this strategy, Tzolkin can answer queries
requiring abstractions for a single patient, performing
the necessary computations transparently. It can use
simple variations on this approach to evaluate the two
other classes of queries that we described. The
second class that we described requests abstracted
data for multiple patients. (Such a query might be
used, e.g., to identify all patients in the database who
meet the eligibility criteria for a particular protocol.)
If this type of query is issued to the system, Tzolkin

executes the process sequentially for each individual
set of patient data. This strategy ensures the proper
partitioning of patient-specific data while the
abstractions are computed. Finally, the third class of
queries requests only primitive patient data from the
database. If the query preprocessor does not detect a
need for abstractions, the query is simply passed to
the Chronus module for TLSQL-style retrieval (i.e.,
only step 7 of the outlined evaluation strategy is
executed).

Tzolkin Batch Computation
In addition to coordinating RItSUM1t and

Chronus, the integrated Tzolkin architecture provides
a batch-computation feature that can optimize system
use in certain situations. Batch computadon
involves the generation and storage of all possible
abstractions for a given set of data in advance of the
their use. Thus, at run time, only the Chronus
component is invoked to process the temporal
conditions of the query. This feature may be useful in
applications where the data set is reasonably static
(e.g., during a therapy session where the identity of
the patient and all relevant data are known in
advance.) When a batch command has been issued
and completed for a particular data set, the results
will be cached in the database until they are explicitly
deleted by the user. Until this deletion, all requests
for these abstractions will be referred directly to the
database, rather than evaluated in the regular manner.
This feature is useful from the perspective of
efficiency.

DISCUSSION

We have designed and fully implemented a
temporal-database mediator that is capable of
answering the abstract, time-oriented queries typically
encountered in protocol-based decision support.
Tzolkin integrates the RJtSUMIN and Chronus
systems into a single module that can mediate queries
to an external relational database. By separating
clinical data from clinical domain knowledge, and by
making few assumptions about the nature of the
external clinical database, we have avoided the
incompatibility problems of earlier approaches.
Tzolkin can function in two capacities: as a
standalone system for use by the care provider who
wishes to query and visualize the clinical data directly
(in primitive or abstracted form) and as a mediator
module embedded within a larger decision-support
architecture. We have successfully embedded
Tzolkin within such an architecture, named EON8
(Figure 3). We have evaluated Tzolkin within this

301

EON architecture
Problem- P
solving database
methods Patient Tolkin

for dPataetTzld
decision Knowledge
support base

_-Protocol knowledge

Protocol-specific
advice

End-user
applications

Figure 3: Schematic overview of the EON decision
support architecture. Within this framework, Tzolkin
mediates all access to the patient database, providing
temporal-abstraction and temporal-querying services
to the problem-solving modules.

framework and as a standalone system to resolve the
three types of temporal queries described. Within our
domain of evaluation - AIDS therapy planning -
Tzolkin has, informally, been able to meet the data-
processing requirements of protocol planners. Future
work will include a formal evaluation of Tzolkin's
capabilities.

The mediator approach to temporal-data
management is novel, and thus raises new problems.
One such problem is the difficulty in evaluating the
general time complexity of a system that uses both
rule-based and database methods; the basic
computational operation is difficult to define. We
recognize, however, that certain complex queries can
be optimized, and we have implemented one feature
to do this (batch computation).

Our optimization strategy, itself, raises an
important issue: the defeasibility of the computed
temporal-abstractions. The RItSUMIt system uses a
truth-maintenance system that allows specific
temporal abstractions to be withdrawn from working
memory when new, contradictory data arrive. This
truth-maintenance system currently does not extend to
the external database. To avoid this problem of
nonmonotonicity, Tzolkin computes all abstractions
based on the content of the database at the moment
that the query is evaluated. Furthermore, it does not
save the computed abstractions between queries
unless so indicated by the user. Consequently,
without a truth-maintenance system at the database
level, caching features such as batch computation are
useful only when used with a data set that is

guaranteed to be consistent over time (an unlikely
situation in clinical databases). Several possible
solutions have been proposed, such as the use of
temporal checkpoints beyond which previously
computed abstractions are available for retrieval but
not for modification.9 We are currently investigating
the most appropriate solutions to nonmonotonicity
and optimization.

Acknowledgments

This work has been supported by grants LM05708
and LM06245 from the National Library of Medicine
and grants IRI-9528444 and IRI-9257578 from the
National Science Foundation. We are grateful to Lyn
Dupr6 for editing this manuscript.

References

1. Hripcsak G, Ludemann P, Pryor TA, Weigertz
OB, Clayton PD. Rationale for the Arden syntax.
Computers and Biomedical Research, 1994;
7(4):291-324.
2. Kahn MG, Fagan, LM, Tu S. Extensions to the
time-oriented database model to support temporal
reasoning in medical expert systems. Methods of
Information in Medicine, 1991; 30:4-14
3. Das AK, Shahar Y, Tu SW, Musen MA. A
temporal-abstraction mediator for protocol-based
decision-support systems. In Ozbolt JG (ed.),
Proceedings ofthe Eighteenth Annual Symposium on
Computer Applications in Medical Care,
Washington, D.C., Hanley & Belfus, 1994; 320-324.
4. Shahar Y, Musen MA. Knowledge-based temporal
abstraction in clinical domains. Artificial Intelligence
in Medicine, 1996; 8:267-298.
5. Das AK, Musen MA. A temporal query system for
protocol-directed decision support. Methods of
Information in Medicine, 1994; 33(4):358-370.
6. Shahar Y. A framework for knowledge-based
temporal abstraction. Artificial Intelligence, 1997;
90:79-133.
7. Wiederhold G. Mediators in the architecture of
future information systems. IEEE Computer, 1992;
25:38-50.
8. Musen MA, Tu SW, Das AK, Shahar Y. EON: A
component-based approach to automation of
protocol-directed therapy. Journal ofthe American
Medical Informatics Association, 1996; 3(6): 367-
388.
9. Combi C, Shahar Y. Temporal reasoning and
temporal data maintenance in medicine: issues and
challenges. Computers in Biology and Medicine (in
press).

302

